Properties

Label 2.12.18.39
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(18\)
Galois group $C_2^5.(C_2\times C_6)$ (as 12T142)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 8 x^{10} + 4 x^{9} + 8 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{3} + 8 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.0.1, 2.6.6.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(-2 t^{2} - 2 t + 4\right) x^{3} + \left(4 t^{2} + 4 t + 4\right) x^{2} + \left(4 t^{2} + 4 t + 4\right) x - 2 t^{2} + 2 t + 4 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2^5.(C_2\times C_6)$ (as 12T142)
Inertia group:Intransitive group isomorphic to $C_2^6$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[2, 2, 2, 2, 2, 2]
Galois mean slope:$63/32$
Galois splitting model:$x^{12} - 2 x^{11} - 18 x^{10} + 64 x^{9} + 12 x^{8} - 362 x^{7} + 642 x^{6} - 338 x^{5} - 221 x^{4} + 312 x^{3} - 52 x^{2} - 52 x + 13$