Properties

Label 2.12.18.28
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(18\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 52 x^{10} + 1100 x^{8} - 12000 x^{6} - 61072 x^{4} + 62144 x^{2} - 62144 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 2 })|$: $12$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.4.6.3, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} - 2 t^{5} + 6 t^{4} - 2 t^{3} - 6 t^{2} + 2 t - 6 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[3]
Galois mean slope:$3/2$
Galois splitting model:$x^{12} + 50 x^{10} + 860 x^{8} + 6400 x^{6} + 20400 x^{4} + 24000 x^{2} + 8000$