Defining polynomial
| \( x^{12} - 156 x^{10} + 9900 x^{8} - 61856 x^{6} + 33904 x^{4} + 27712 x^{2} + 47936 \) |
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $2$ |
| Residue field degree $f$ : | $6$ |
| Discriminant exponent $c$ : | $18$ |
| Discriminant root field: | $\Q_{2}(\sqrt{*})$ |
| Root number: | $-1$ |
| $|\Gal(K/\Q_{ 2 })|$: | $12$ |
| This field is Galois and abelian over $\Q_{2}$. | |
Intermediate fields
| $\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.4.6.4, 2.6.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \) |
| Relative Eisenstein polynomial: | $ x^{2} + 8 t^{5} + 8 t^{2} - 6 \in\Q_{2}(t)[x]$ |