Properties

Label 2.12.18.22
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(18\)
Galois group $D_4\times A_4$ (as 12T51)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 152 x^{10} - 1068 x^{8} + 960 x^{6} - 720 x^{4} - 1408 x^{2} - 576 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $18$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} - 2 t^{5} + 2 t^{3} - 2 t^{2} \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$D_4\times A_4$ (as 12T51)
Inertia group:Intransitive group isomorphic to $C_2^4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:[2, 2, 2, 3]
Galois mean slope:$19/8$
Galois splitting model:$x^{12} - 8 x^{10} - 8 x^{8} + 72 x^{6} + 32 x^{4} - 128 x^{2} - 64$