Properties

Label 2.12.16.9
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group $(C_6\times C_2):C_2$ (as 12T15)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 7 x^{10} + 4 x^{8} + 3 x^{6} - 4 x^{4} - x^{2} - 5 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $6$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.2.1 x3, 2.4.4.4, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + \left(4 t + 2\right) x^{4} + \left(2 t + 2\right) x^{3} + \left(2 t - 2\right) x^{2} + \left(4 t + 4\right) x - 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3:D_4$ (as 12T15)
Inertia group:Intransitive group isomorphic to $C_2\times C_6$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[2, 2]
Galois mean slope:$5/3$
Galois splitting model:$x^{12} - 3 x^{10} + 9 x^{6} + 12 x^{4} + 9 x^{2} + 3$