Properties

Label 2.12.16.6
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group $C_3\times C_3:D_4$ (as 12T42)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 3 x^{10} + 4 x^{8} - 3 x^{6} + 4 x^{4} + x^{2} + 3 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $6$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.4.4.4, 2.6.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + 2 t x^{5} + 2 t x^{3} + 2 t x^{2} + 2 t \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times C_3:D_4$ (as 12T42)
Inertia group:Intransitive group isomorphic to $C_2\times C_6$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:[2, 2]
Galois mean slope:$5/3$
Galois splitting model:$x^{12} - 10 x^{9} + 30 x^{6} - 16 x^{3} + 4$