Properties

Label 2.12.16.24
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(16\)
Galois group 12T254

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{5} + 2 x^{4} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{5} + 2 x^{4} + 2 \)

Invariants of the Galois closure

Galois group:12T254
Inertia group:12T166
Unramified degree:$6$
Tame degree:$9$
Wild slopes:[14/9, 14/9, 14/9, 14/9, 14/9, 14/9]
Galois mean slope:$445/288$
Galois splitting model:$x^{12} - 6 x^{11} + 12 x^{10} - 2 x^{9} - 27 x^{8} + 36 x^{7} - 9756 x^{5} + 24327 x^{4} + 184682 x^{3} - 311052 x^{2} + 165246 x + 145799$