Properties

Label 2.12.16.23
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(16\)
Galois group $C_4^2:C_3:C_2$ (as 12T65)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 2 x^{5} + 2 x^{2} + 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $12$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

2.3.2.1, 2.6.6.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{12} + 2 x^{5} + 2 x^{2} + 2 \)

Invariants of the Galois closure

Galois group:$C_4^2:C_3:C_2$ (as 12T65)
Inertia group:12T31
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 5/3, 5/3]
Galois mean slope:$37/24$
Galois splitting model:$x^{12} - 2 x^{11} + 8 x^{10} + 14 x^{9} + 3 x^{8} + 36 x^{7} + 96 x^{6} + 36 x^{5} + 3 x^{4} + 14 x^{3} + 8 x^{2} - 2 x + 1$