Properties

Label 2.12.16.18
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{10} + 4 x^{9} + 8 x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 4 x^{4} + 12\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $12$
This field is Galois over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.2.1 x3, 2.4.4.2, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{4} + z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois group:$C_3:C_4$ (as 12T5)
Inertia group:Intransitive group isomorphic to $C_6$
Wild inertia group:$C_2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[2]$
Galois mean slope:$4/3$
Galois splitting model: $x^{12} - 6 x^{11} - 39 x^{10} + 126 x^{9} + 702 x^{8} - 354 x^{7} - 4589 x^{6} - 3012 x^{5} + 9954 x^{4} + 12828 x^{3} - 4167 x^{2} - 12600 x - 4819$ Copy content Toggle raw display