Properties

Label 2.12.16.15
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group $\GL(2,\mathbb{Z}/4)$ (as 12T50)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{10} - 2 x^{9} + 8 x^{8} + 4 x^{7} + 12 x^{6} - 4 x^{5} + 8 x^{4} - 4 x^{3} + 8 x^{2} + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.2.1 x3, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + \left(2 t + 2\right) x^{4} + 2 t x^{3} + 2 x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t$,$z^{4} + z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois group:$\GL(2,\mathbb{Z}/4)$ (as 12T50)
Inertia group:Intransitive group isomorphic to $C_2^2\times A_4$
Wild inertia group:$C_2^4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3, 2, 2]$
Galois mean slope:$43/24$
Galois splitting model: $x^{12} - 4 x^{11} + 13 x^{10} - 28 x^{9} + 50 x^{8} - 70 x^{7} + 71 x^{6} - 42 x^{5} + 6 x^{4} + 10 x^{3} - 7 x^{2} + 1$ Copy content Toggle raw display