Properties

Label 2.12.14.1
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(14\)
Galois group $S_4$ (as 12T8)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[4/3, 4/3]$

Intermediate fields

2.3.2.1, 2.4.4.5 x2, 2.6.6.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 2 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$2$,$2$
Indices of inseparability:$[3, 3, 0]$

Invariants of the Galois closure

Galois group:$S_4$ (as 12T8)
Inertia group:$A_4$ (as 12T4)
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3]$
Galois mean slope:$7/6$
Galois splitting model:$x^{12} - 2 x^{11} + 6 x^{9} - 9 x^{8} + 6 x^{7} + 2 x^{6} - 12 x^{5} + 15 x^{4} - 14 x^{3} + 8 x^{2} - 4 x + 1$