Properties

Label 2.12.12.12
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(12\)
Galois group $C_4\times A_4$ (as 12T29)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 84 x^{10} - 88 x^{9} + 1660 x^{8} - 1568 x^{7} + 13920 x^{6} - 4928 x^{5} + 47280 x^{4} + 23936 x^{3} + 63552 x^{2} + 32896 x + 51520\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $2$
Residue field degree $f$: $6$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.0.1, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} + x^{4} + x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(2 t^{5} + 2 t\right) x + 4 t + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^{5} + t$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_4\times A_4$ (as 12T29)
Inertia group:Intransitive group isomorphic to $C_2^3$
Wild inertia group:$C_2^3$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2, 2, 2]$
Galois mean slope:$7/4$
Galois splitting model: $x^{12} + 13 x^{10} + 52 x^{8} + 52 x^{6} - 91 x^{4} - 143 x^{2} + 13$ Copy content Toggle raw display