Properties

Label 2.10.14.6
Base \(\Q_{2}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(14\)
Galois group $((C_2^4 : C_5):C_4)\times C_2$ (as 10T29)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 2 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{4} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification exponent $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

2.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{10} + 2 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{4} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{8} + z^{6} + 1$
Associated inertia:$1$,$4$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois group:$C_2\wr F_5$ (as 10T29)
Inertia group:$C_2\wr C_5$ (as 10T14)
Wild inertia group:$C_2^5$
Unramified degree:$4$
Tame degree:$5$
Wild slopes:$[6/5, 6/5, 6/5, 6/5, 2]$
Galois mean slope:$127/80$
Galois splitting model:$x^{10} + 15 x^{8} - 40 x^{7} + 80 x^{6} - 442 x^{5} + 610 x^{4} - 1080 x^{3} + 2705 x^{2} - 130 x + 1811$