Defining polynomial
\( x^{10} + 2 x^{2} + 2 x + 2 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 2 })|$: | $2$ |
This field is not Galois over $\Q_{2}.$ |
Intermediate fields
2.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: | \( x^{10} + 2 x^{2} + 2 x + 2 \) |