Defining polynomial
\( x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$|\Aut(K/\Q_{ 2 })|$: | $2$ |
This field is not Galois over $\Q_{2}.$ |
Intermediate fields
2.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.5.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) |
Relative Eisenstein polynomial: | $ x^{2} + 2 x - 2 t^{4} - 2 t^{3} - 2 t^{2} - 2 t - 2 \in\Q_{2}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_2^4:C_5$ (as 10T8) |
Inertia group: | Intransitive group isomorphic to $C_2^4$ |
Unramified degree: | $5$ |
Tame degree: | $1$ |
Wild slopes: | [2, 2, 2, 2] |
Galois mean slope: | $15/8$ |
Galois splitting model: | $x^{10} - 4 x^{8} + 2 x^{6} + 5 x^{4} - 2 x^{2} - 1$ |