Defining polynomial
\( x^{10} - x^{3} + 1 \) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $1$ |
Residue field degree $f$: | $10$ |
Discriminant exponent $c$: | $0$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 2 })|$: | $10$ |
This field is Galois and abelian over $\Q_{2}.$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, 2.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 2.10.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{10} - x^{3} + 1 \) |
Relative Eisenstein polynomial: | $ x - 2 \in\Q_{2}(t)[x]$ |