Properties

Label 199.6.3.2
Base \(\Q_{199}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} - 39601 x^{2} + 31522396 \)

Invariants

Base field: $\Q_{199}$
Degree $d$ : $6$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $3$
Discriminant root field: $\Q_{199}(\sqrt{199*})$
Root number: $-i$
$|\Gal(K/\Q_{ 199 })|$: $6$
This field is Galois and abelian over $\Q_{199}$.

Intermediate fields

$\Q_{199}(\sqrt{199*})$, 199.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:199.3.0.1 $\cong \Q_{199}(t)$ where $t$ is a root of \( x^{3} - x + 4 \)
Relative Eisenstein polynomial:$ x^{2} - 199 t \in\Q_{199}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{6} - x^{5} + 248 x^{4} - 49 x^{3} + 14950 x^{2} - 5000 x + 125000$