Properties

Label 199.5.4.1
Base \(\Q_{199}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)
Galois group $D_{5}$ (as 5T2)

Related objects

Learn more about

Defining polynomial

\( x^{5} - 199 \)

Invariants

Base field: $\Q_{199}$
Degree $d$ : $5$
Ramification exponent $e$ : $5$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $4$
Discriminant root field: $\Q_{199}$
Root number: $1$
$|\Aut(K/\Q_{ 199 })|$: $1$
This field is not Galois over $\Q_{199}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 199 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{199}$
Relative Eisenstein polynomial:\( x^{5} - 199 \)

Invariants of the Galois closure

Galois group:$D_5$ (as 5T2)
Inertia group:$C_5$
Unramified degree:$2$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:$x^{5} - x^{4} + 80 x^{3} - 16 x^{2} - 476 x - 1764$