Defining polynomial
| \( x^{6} - 4864 \) |
Invariants
| Base field: | $\Q_{19}$ |
| Degree $d$ : | $6$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $5$ |
| Discriminant root field: | $\Q_{19}(\sqrt{19})$ |
| Root number: | $i$ |
| $|\Gal(K/\Q_{ 19 })|$: | $6$ |
| This field is Galois and abelian over $\Q_{19}$. | |
Intermediate fields
| $\Q_{19}(\sqrt{19})$, 19.3.2.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{19}$ |
| Relative Eisenstein polynomial: | \( x^{6} - 4864 \) |