Properties

Label 19.5.4.1
Base \(\Q_{19}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)
Galois group $D_{5}$ (as 5T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{5} + 19\) Copy content Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $5$
Ramification exponent $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{19}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 19 }) }$: $1$
This field is not Galois over $\Q_{19}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 19 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{19}$
Relative Eisenstein polynomial: \( x^{5} + 19 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 5z^{3} + 10z^{2} + 10z + 5$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$D_5$ (as 5T2)
Inertia group:$C_5$ (as 5T1)
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:$x^{5} - 2 x^{4} - 6 x^{3} + 10 x^{2} + 17 x - 12$