Defining polynomial
\(x^{4} + 76\) ![]() |
Invariants
Base field: | $\Q_{19}$ |
Degree $d$: | $4$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $3$ |
Discriminant root field: | $\Q_{19}(\sqrt{19})$ |
Root number: | $-i$ |
$|\Aut(K/\Q_{ 19 })|$: | $2$ |
This field is not Galois over $\Q_{19}.$ |
Intermediate fields
$\Q_{19}(\sqrt{19\cdot 2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{19}$ |
Relative Eisenstein polynomial: | \( x^{4} + 76 \) ![]() |
Invariants of the Galois closure
Galois group: | $D_4$ (as 4T3) |
Inertia group: | $C_4$ |
Unramified degree: | $2$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | $x^{4} + 76$ |