Defining polynomial
\( x^{13} - 19 \) |
Invariants
Base field: | $\Q_{19}$ |
Degree $d$: | $13$ |
Ramification exponent $e$: | $13$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{19}(\sqrt{2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 19 })|$: | $1$ |
This field is not Galois over $\Q_{19}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 19 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{19}$ |
Relative Eisenstein polynomial: | \( x^{13} - 19 \) |
Invariants of the Galois closure
Galois group: | $F_{13}$ (as 13T6) |
Inertia group: | $C_{13}$ |
Unramified degree: | $12$ |
Tame degree: | $13$ |
Wild slopes: | None |
Galois mean slope: | $12/13$ |
Galois splitting model: | $x^{13} - 52 x^{12} + 1248 x^{11} - 18304 x^{10} + 183040 x^{9} - 1317888 x^{8} + 7028736 x^{7} - 28114944 x^{6} + 84344832 x^{5} - 187432960 x^{4} + 299892736 x^{3} - 327155712 x^{2} + 218103808 x - 67108883$ |