Defining polynomial
\( x^{12} - 38 x^{8} + 361 x^{4} - 109744 \) |
Invariants
Base field: | $\Q_{19}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{19}(\sqrt{19\cdot 2})$ |
Root number: | $-i$ |
$|\Aut(K/\Q_{ 19 })|$: | $6$ |
This field is not Galois over $\Q_{19}.$ |
Intermediate fields
$\Q_{19}(\sqrt{19})$, 19.3.0.1, 19.4.3.2, 19.6.3.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 19.3.0.1 $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{3} - x + 4 \) |
Relative Eisenstein polynomial: | $ x^{4} - 19 t^{2} \in\Q_{19}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_3\times D_4$ (as 12T14) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Unramified degree: | $6$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | Not computed |