Defining polynomial
| \( x^{4} - x + 26 \) |
Invariants
| Base field: | $\Q_{173}$ |
| Degree $d$ : | $4$ |
| Ramification exponent $e$ : | $1$ |
| Residue field degree $f$ : | $4$ |
| Discriminant exponent $c$ : | $0$ |
| Discriminant root field: | $\Q_{173}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Gal(K/\Q_{ 173 })|$: | $4$ |
| This field is Galois and abelian over $\Q_{173}$. | |
Intermediate fields
| $\Q_{173}(\sqrt{*})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | 173.4.0.1 $\cong \Q_{173}(t)$ where $t$ is a root of \( x^{4} - x + 26 \) |
| Relative Eisenstein polynomial: | $ x - 173 \in\Q_{173}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_4$ (as 4T1) |
| Inertia group: | Trivial |
| Unramified degree: | $4$ |
| Tame degree: | $1$ |
| Wild slopes: | None |
| Galois mean slope: | $0$ |
| Galois splitting model: | $x^{4} - x^{3} - 6 x^{2} + x + 1$ |