Base \(\Q_{17}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(6\)
Galois group $F_7$ (as 7T4)

Related objects

Learn more about

Defining polynomial

\(x^{7} - 17\)  Toggle raw display


Base field: $\Q_{17}$
Degree $d$: $7$
Ramification exponent $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{17}(\sqrt{3})$
Root number: $1$
$|\Aut(K/\Q_{ 17 })|$: $1$
This field is not Galois over $\Q_{17}.$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 17 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{17}$
Relative Eisenstein polynomial:\( x^{7} - 17 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$F_7$ (as 7T4)
Inertia group:$C_7$
Unramified degree:$6$
Tame degree:$7$
Wild slopes:None
Galois mean slope:$6/7$
Galois splitting model:$x^{7} - 17$