Defining polynomial
| \( x^{12} + 85 x^{6} + 2601 \) |
Invariants
| Base field: | $\Q_{17}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $10$ |
| Discriminant root field: | $\Q_{17}$ |
| Root number: | $-1$ |
| $|\Aut(K/\Q_{ 17 })|$: | $6$ |
| This field is not Galois over $\Q_{17}$. | |
Intermediate fields
| $\Q_{17}(\sqrt{*})$, $\Q_{17}(\sqrt{17})$, $\Q_{17}(\sqrt{17*})$, 17.4.2.1, 17.6.4.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{17}(\sqrt{*})$ $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{2} - x + 3 \) |
| Relative Eisenstein polynomial: | $ x^{6} - 17 t^{2} \in\Q_{17}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_6\times S_3$ (as 12T18) |
| Inertia group: | Intransitive group isomorphic to $C_6$ |
| Unramified degree: | $6$ |
| Tame degree: | $6$ |
| Wild slopes: | None |
| Galois mean slope: | $5/6$ |
| Galois splitting model: | Not computed |