Defining polynomial
\( x^{10} + 51 \) |
Invariants
Base field: | $\Q_{17}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{17}(\sqrt{17\cdot 3})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 17 })|$: | $2$ |
This field is not Galois over $\Q_{17}.$ |
Intermediate fields
$\Q_{17}(\sqrt{17\cdot 3})$, 17.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{17}$ |
Relative Eisenstein polynomial: | \( x^{10} + 51 \) |
Invariants of the Galois closure
Galois group: | $C_2\times F_5$ (as 10T5) |
Inertia group: | $C_{10}$ |
Unramified degree: | $4$ |
Tame degree: | $10$ |
Wild slopes: | None |
Galois mean slope: | $9/10$ |
Galois splitting model: | $x^{10} + 51$ |