Properties

Label 17.10.8.1
Base \(\Q_{17}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(8\)
Galois group $F_5$ (as 10T4)

Related objects

Learn more about

Defining polynomial

\( x^{10} - 17 x^{5} + 867 \)

Invariants

Base field: $\Q_{17}$
Degree $d$: $10$
Ramification exponent $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{17}(\sqrt{3})$
Root number: $1$
$|\Aut(K/\Q_{ 17 })|$: $2$
This field is not Galois over $\Q_{17}.$

Intermediate fields

$\Q_{17}(\sqrt{3})$, 17.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{17}(\sqrt{3})$ $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{2} - x + 3 \)
Relative Eisenstein polynomial:$ x^{5} - 17 t \in\Q_{17}(t)[x]$

Invariants of the Galois closure

Galois group:$F_5$ (as 10T4)
Inertia group:Intransitive group isomorphic to $C_5$
Unramified degree:$4$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:Not computed