Defining polynomial
| \( x^{6} - 163 \) |
Invariants
| Base field: | $\Q_{163}$ |
| Degree $d$ : | $6$ |
| Ramification exponent $e$ : | $6$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $5$ |
| Discriminant root field: | $\Q_{163}(\sqrt{163})$ |
| Root number: | $i$ |
| $|\Gal(K/\Q_{ 163 })|$: | $6$ |
| This field is Galois and abelian over $\Q_{163}$. | |
Intermediate fields
| $\Q_{163}(\sqrt{163})$, 163.3.2.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{163}$ |
| Relative Eisenstein polynomial: | \( x^{6} - 163 \) |
Invariants of the Galois closure
| Galois group: | $C_6$ (as 6T1) |
| Inertia group: | $C_6$ |
| Unramified degree: | $1$ |
| Tame degree: | $6$ |
| Wild slopes: | None |
| Galois mean slope: | $5/6$ |
| Galois splitting model: | $x^{6} - x^{5} + 503 x^{4} + 1645 x^{3} - 5931 x^{2} - 14079 x + 100867$ |