Properties

Label 157.8.6.4
Base \(\Q_{157}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 2669 x^{4} + 5324184 \)

Invariants

Base field: $\Q_{157}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{157}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 157 })|$: $8$
This field is Galois and abelian over $\Q_{157}$.

Intermediate fields

$\Q_{157}(\sqrt{*})$, 157.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{157}(\sqrt{*})$ $\cong \Q_{157}(t)$ where $t$ is a root of \( x^{2} - x + 6 \)
Relative Eisenstein polynomial:$ x^{4} - 157 t^{3} \in\Q_{157}(t)[x]$

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:Not computed