Properties

Label 151.6.0.1
Base \(\Q_{151}\)
Degree \(6\)
e \(1\)
f \(6\)
c \(0\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\(x^{6} - x + 6\)  Toggle raw display

Invariants

Base field: $\Q_{151}$
Degree $d$: $6$
Ramification exponent $e$: $1$
Residue field degree $f$: $6$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{151}(\sqrt{3})$
Root number: $1$
$|\Gal(K/\Q_{ 151 })|$: $6$
This field is Galois and abelian over $\Q_{151}.$

Intermediate fields

$\Q_{151}(\sqrt{3})$, 151.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:151.6.0.1 $\cong \Q_{151}(t)$ where $t$ is a root of \( x^{6} - x + 6 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 151 \)$\ \in\Q_{151}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:trivial
Unramified degree:$6$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{6} - x^{5} - 25 x^{4} - 8 x^{3} + 123 x^{2} + 126 x + 27$