Properties

Label 151.4.2.2
Base \(\Q_{151}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more about

Defining polynomial

\(x^{4} - 151 x^{2} + 273612\)  Toggle raw display

Invariants

Base field: $\Q_{151}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{151}(\sqrt{3})$
Root number: $-1$
$|\Gal(K/\Q_{ 151 })|$: $4$
This field is Galois and abelian over $\Q_{151}.$

Intermediate fields

$\Q_{151}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{151}(\sqrt{3})$ $\cong \Q_{151}(t)$ where $t$ is a root of \( x^{2} - x + 12 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{2} - 151 t \)$\ \in\Q_{151}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{4} - x^{3} - 492 x^{2} - 490 x + 18281$