Properties

Label 151.12.0.1
Base \(\Q_{151}\)
Degree \(12\)
e \(1\)
f \(12\)
c \(0\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + x^{8} + 109 x^{7} + 121 x^{6} + 101 x^{5} + 6 x^{4} + 77 x^{3} + 107 x^{2} + 147 x + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{151}$
Degree $d$: $12$
Ramification exponent $e$: $1$
Residue field degree $f$: $12$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{151}(\sqrt{3})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 151 }) }$: $12$
This field is Galois and abelian over $\Q_{151}.$
Visible slopes:None

Intermediate fields

$\Q_{151}(\sqrt{3})$, 151.3.0.1, 151.4.0.1, 151.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:151.12.0.1 $\cong \Q_{151}(t)$ where $t$ is a root of \( x^{12} + x^{8} + 109 x^{7} + 121 x^{6} + 101 x^{5} + 6 x^{4} + 77 x^{3} + 107 x^{2} + 147 x + 6 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 151 \) $\ \in\Q_{151}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$12$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{12} - x^{11} + 3 x^{10} - 11 x^{9} - 17 x^{8} + 169 x^{7} + 325 x^{6} - 167 x^{5} - 804 x^{4} - 160 x^{3} + 1102 x^{2} + 780 x + 1179$