Properties

Label 149.4.0.1
Base \(\Q_{149}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more about

Defining polynomial

\( x^{4} - x + 2 \)

Invariants

Base field: $\Q_{149}$
Degree $d$: $4$
Ramification exponent $e$: $1$
Residue field degree $f$: $4$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{149}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 149 })|$: $4$
This field is Galois and abelian over $\Q_{149}.$

Intermediate fields

$\Q_{149}(\sqrt{*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:149.4.0.1 $\cong \Q_{149}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x - 149 \in\Q_{149}(t)[x]$

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:trivial
Unramified degree:$4$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{4} - x^{3} + 2 x^{2} + 4 x + 3$