Defining polynomial
\(x^{12} - x + 89\) ![]() |
Invariants
Base field: | $\Q_{149}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $1$ |
Residue field degree $f$: | $12$ |
Discriminant exponent $c$: | $0$ |
Discriminant root field: | $\Q_{149}(\sqrt{2})$ |
Root number: | $1$ |
$|\Gal(K/\Q_{ 149 })|$: | $12$ |
This field is Galois and abelian over $\Q_{149}.$ |
Intermediate fields
$\Q_{149}(\sqrt{2})$, 149.3.0.1, 149.4.0.1, 149.6.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 149.12.0.1 $\cong \Q_{149}(t)$ where $t$ is a root of \( x^{12} - x + 89 \) ![]() |
Relative Eisenstein polynomial: | \( x - 149 \)$\ \in\Q_{149}(t)[x]$ ![]() |