Properties

Label 139.6.5.5
Base \(\Q_{139}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} + 8896 \)

Invariants

Base field: $\Q_{139}$
Degree $d$ : $6$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $5$
Discriminant root field: $\Q_{139}(\sqrt{139*})$
Root number: $-i$
$|\Gal(K/\Q_{ 139 })|$: $6$
This field is Galois and abelian over $\Q_{139}$.

Intermediate fields

$\Q_{139}(\sqrt{139*})$, 139.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{139}$
Relative Eisenstein polynomial:\( x^{6} + 8896 \)

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{6} - x^{5} + 12 x^{4} - 188 x^{3} - 46 x^{2} + 1356 x + 1723$