Properties

Label 137.8.7.6
Base \(\Q_{137}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(7\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 3699 \)

Invariants

Base field: $\Q_{137}$
Degree $d$ : $8$
Ramification exponent $e$ : $8$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $7$
Discriminant root field: $\Q_{137}(\sqrt{137*})$
Root number: $-1$
$|\Gal(K/\Q_{ 137 })|$: $8$
This field is Galois and abelian over $\Q_{137}$.

Intermediate fields

$\Q_{137}(\sqrt{137*})$, 137.4.3.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{137}$
Relative Eisenstein polynomial:\( x^{8} + 3699 \)

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:$C_8$
Unramified degree:$1$
Tame degree:$8$
Wild slopes:None
Galois mean slope:$7/8$
Galois splitting model:Not computed