Properties

Label 137.4.3.2
Base \(\Q_{137}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more about

Defining polynomial

\( x^{4} - 1233 \)

Invariants

Base field: $\Q_{137}$
Degree $d$ : $4$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $3$
Discriminant root field: $\Q_{137}(\sqrt{137})$
Root number: $1$
$|\Gal(K/\Q_{ 137 })|$: $4$
This field is Galois and abelian over $\Q_{137}$.

Intermediate fields

$\Q_{137}(\sqrt{137})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{137}$
Relative Eisenstein polynomial:\( x^{4} - 1233 \)

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:$C_4$
Unramified degree:$1$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{4} - x^{3} + 86 x^{2} - 608 x + 1408$