Defining polynomial
| \( x^{14} - 13 x^{7} + 338 \) |
Invariants
| Base field: | $\Q_{13}$ |
| Degree $d$ : | $14$ |
| Ramification exponent $e$ : | $7$ |
| Residue field degree $f$ : | $2$ |
| Discriminant exponent $c$ : | $12$ |
| Discriminant root field: | $\Q_{13}(\sqrt{*})$ |
| Root number: | $1$ |
| $|\Aut(K/\Q_{ 13 })|$: | $7$ |
| This field is not Galois over $\Q_{13}$. | |
Intermediate fields
| $\Q_{13}(\sqrt{*})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{13}(\sqrt{*})$ $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{2} - x + 2 \) |
| Relative Eisenstein polynomial: | $ x^{7} - 13 t \in\Q_{13}(t)[x]$ |
Invariants of the Galois closure
| Galois group: | $C_7\times D_7$ (as 14T8) |
| Inertia group: | Intransitive group isomorphic to $C_7$ |
| Unramified degree: | $14$ |
| Tame degree: | $7$ |
| Wild slopes: | None |
| Galois mean slope: | $6/7$ |
| Galois splitting model: | Not computed |