Defining polynomial
| \( x^{12} + 6656 \) |
Invariants
| Base field: | $\Q_{13}$ |
| Degree $d$ : | $12$ |
| Ramification exponent $e$ : | $12$ |
| Residue field degree $f$ : | $1$ |
| Discriminant exponent $c$ : | $11$ |
| Discriminant root field: | $\Q_{13}(\sqrt{13*})$ |
| Root number: | $1$ |
| $|\Gal(K/\Q_{ 13 })|$: | $12$ |
| This field is Galois and abelian over $\Q_{13}$. | |
Intermediate fields
| $\Q_{13}(\sqrt{13*})$, 13.3.2.2, 13.4.3.3, 13.6.5.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
| Unramified subfield: | $\Q_{13}$ |
| Relative Eisenstein polynomial: | \( x^{12} + 6656 \) |