Properties

Label 13.12.0.1
Base \(\Q_{13}\)
Degree \(12\)
e \(1\)
f \(12\)
c \(0\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + x^{8} + 5 x^{7} + 8 x^{6} + 11 x^{5} + 3 x^{4} + x^{3} + x^{2} + 4 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $12$
Ramification exponent $e$: $1$
Residue field degree $f$: $12$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{13}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $12$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{2})$, 13.3.0.1, 13.4.0.1, 13.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:13.12.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{12} + x^{8} + 5 x^{7} + 8 x^{6} + 11 x^{5} + 3 x^{4} + x^{3} + x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 13 \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$12$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{12} + 3 x^{10} - x^{9} + 9 x^{8} + 9 x^{7} + 28 x^{6} + 18 x^{5} + 75 x^{4} + 26 x^{3} + 9 x^{2} + 3 x + 1$