Properties

Label 113.14.12.1
Base \(\Q_{113}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(12\)
Galois group $C_{14}$ (as 14T1)

Related objects

Learn more about

Defining polynomial

\( x^{14} + 640597 x^{7} + 127690000000 \)

Invariants

Base field: $\Q_{113}$
Degree $d$ : $14$
Ramification exponent $e$ : $7$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{113}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 113 })|$: $14$
This field is Galois and abelian over $\Q_{113}$.

Intermediate fields

$\Q_{113}(\sqrt{*})$, 113.7.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{113}(\sqrt{*})$ $\cong \Q_{113}(t)$ where $t$ is a root of \( x^{2} - x + 10 \)
Relative Eisenstein polynomial:$ x^{7} - 113 t^{7} \in\Q_{113}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{14}$ (as 14T1)
Inertia group:Intransitive group isomorphic to $C_7$
Unramified degree:$2$
Tame degree:$7$
Wild slopes:None
Galois mean slope:$6/7$
Galois splitting model:Not computed