Defining polynomial
\(x^{9} - 121 x^{3} + 3993\) ![]() |
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $9$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{11}(\sqrt{2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 11 })|$: | $3$ |
This field is not Galois over $\Q_{11}.$ |
Intermediate fields
11.3.2.1, 11.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 11.3.0.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{3} - x + 3 \) ![]() |
Relative Eisenstein polynomial: | \( x^{3} - 11 t \)$\ \in\Q_{11}(t)[x]$ ![]() |
Invariants of the Galois closure
Galois group: | $C_3\times S_3$ (as 9T4) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Unramified degree: | $6$ |
Tame degree: | $3$ |
Wild slopes: | None |
Galois mean slope: | $2/3$ |
Galois splitting model: | $x^{9} - 4 x^{8} + 32 x^{7} - 97 x^{6} + 331 x^{5} - 647 x^{4} + 965 x^{3} - 926 x^{2} + 345 x - 41$ |