Properties

Label 11.9.0.1
Base \(\Q_{11}\)
Degree \(9\)
e \(1\)
f \(9\)
c \(0\)
Galois group $C_9$ (as 9T1)

Related objects

Learn more about

Defining polynomial

\(x^{9} - x + 3\)  Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $9$
Ramification exponent $e$: $1$
Residue field degree $f$: $9$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{11}$
Root number: $1$
$|\Gal(K/\Q_{ 11 })|$: $9$
This field is Galois and abelian over $\Q_{11}.$

Intermediate fields

11.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:11.9.0.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{9} - x + 3 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 11 \)$\ \in\Q_{11}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_9$ (as 9T1)
Inertia group:trivial
Unramified degree:$9$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{9} - 9 x^{7} + 27 x^{5} - 30 x^{3} + 9 x - 1$