Properties

Label 11.8.4.1
Base \(\Q_{11}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $8$
Ramification exponent $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{11}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 11 }) }$: $8$
This field is Galois and abelian over $\Q_{11}.$
Visible slopes:None

Intermediate fields

$\Q_{11}(\sqrt{2})$, $\Q_{11}(\sqrt{11})$, $\Q_{11}(\sqrt{11\cdot 2})$, 11.4.0.1, 11.4.2.1, 11.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:11.4.0.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{4} + 8 x^{2} + 10 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 11 \) $\ \in\Q_{11}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2\times C_4$ (as 8T2)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{8} - 4 x^{7} + 10 x^{6} - 16 x^{5} + 59 x^{4} - 96 x^{3} + 218 x^{2} - 172 x + 463$