Base \(\Q_{11}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(10\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Learn more about

Defining polynomial

\(x^{15} + 1331 x^{6} - 14641 x^{3} + 805255\)  Toggle raw display


Base field: $\Q_{11}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{11}(\sqrt{2})$
Root number: $1$
$|\Aut(K/\Q_{ 11 })|$: $5$
This field is not Galois over $\Q_{11}.$

Intermediate fields,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{5} + x^{2} - x + 5 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{3} - 11 t \)$\ \in\Q_{11}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_5\times S_3$ (as 15T4)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$10$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed