Defining polynomial
\( x^{14} - 11 x^{7} + 847 \) |
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $14$ |
Ramification exponent $e$: | $7$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{11}(\sqrt{2})$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 11 })|$: | $2$ |
This field is not Galois over $\Q_{11}.$ |
Intermediate fields
$\Q_{11}(\sqrt{2})$, 11.7.6.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{11}(\sqrt{2})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} - x + 7 \) |
Relative Eisenstein polynomial: | $ x^{7} - 11 t \in\Q_{11}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_2\times C_7:C_3$ (as 14T5) |
Inertia group: | Intransitive group isomorphic to $C_7$ |
Unramified degree: | $6$ |
Tame degree: | $7$ |
Wild slopes: | None |
Galois mean slope: | $6/7$ |
Galois splitting model: | Not computed |