Properties

Label 11.12.10.4
Base \(\Q_{11}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $C_3\times (C_3 : C_4)$ (as 12T19)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 11 x^{6} + 847 \)

Invariants

Base field: $\Q_{11}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $10$
Discriminant root field: $\Q_{11}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 11 })|$: $6$
This field is not Galois over $\Q_{11}$.

Intermediate fields

$\Q_{11}(\sqrt{*})$, 11.4.2.2, 11.6.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{11}(\sqrt{*})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} - x + 7 \)
Relative Eisenstein polynomial:$ x^{6} - 11 t \in\Q_{11}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times C_3:C_4$ (as 12T19)
Inertia group:Intransitive group isomorphic to $C_6$
Unramified degree:$6$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{12} - 3 x^{11} + 41 x^{10} - 273 x^{9} + 5320 x^{8} - 1216 x^{7} + 185714 x^{6} - 462051 x^{5} + 6328363 x^{4} + 19619049 x^{3} + 296778921 x^{2} + 695676814 x + 2813125384$