Defining polynomial
\(x^{12} + 143 x^{6} + 5929\) ![]() |
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $6$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{11}$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 11 })|$: | $6$ |
This field is not Galois over $\Q_{11}.$ |
Intermediate fields
$\Q_{11}(\sqrt{2})$, $\Q_{11}(\sqrt{11})$, $\Q_{11}(\sqrt{11\cdot 2})$, 11.4.2.1, 11.6.4.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{11}(\sqrt{2})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} - x + 7 \) ![]() |
Relative Eisenstein polynomial: | \( x^{6} - 11 t^{2} \)$\ \in\Q_{11}(t)[x]$ ![]() |
Invariants of the Galois closure
Galois group: | $C_6\times S_3$ (as 12T18) |
Inertia group: | Intransitive group isomorphic to $C_6$ |
Unramified degree: | $6$ |
Tame degree: | $6$ |
Wild slopes: | None |
Galois mean slope: | $5/6$ |
Galois splitting model: | $x^{12} + 143 x^{6} + 5929$ ![]() |