Defining polynomial
\(x^{11} + 66 x + 11\) ![]() |
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $11$ |
Ramification exponent $e$: | $11$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $11$ |
Discriminant root field: | $\Q_{11}(\sqrt{11})$ |
Root number: | $-i$ |
$|\Aut(K/\Q_{ 11 })|$: | $1$ |
This field is not Galois over $\Q_{11}.$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 11 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{11}$ |
Relative Eisenstein polynomial: | \( x^{11} + 66 x + 11 \) ![]() |
Invariants of the Galois closure
Galois group: | $F_{11}$ (as 11T4) |
Inertia group: | $F_{11}$ |
Unramified degree: | $1$ |
Tame degree: | $10$ |
Wild slopes: | [11/10] |
Galois mean slope: | $119/110$ |
Galois splitting model: | Not computed |